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ABSTRACT: The Madden–Julian oscillation (MJO) is a component of tropical variability that influences high-impact
events such as hurricane activity and Asian monsoons on intraseasonal (2–8 weeks) time scales. However, the atmosphere–
ocean dynamics responsible for the MJO are highly debated. To gain insight into MJO–Indian Ocean dynamics, we con-
duct climate model experiments where the ocean is replaced by a motionless slab whose thickness, called the mixed layer
depth (MLD), varies in space but not in time. Changes in the MLD and ocean heat convergence over the Indian Ocean
have no discernible impact on MJO propagation, predictability, or variability within the Community Earth System Model
(CESM) version 1.2.1. This suggests that ocean dynamics may not be critical to the MJO over the Indian Ocean in this dy-
namical model (CAM5 coupled to motionless slab). To diagnose changes in intraseasonal variability beyond the MJO, a
discriminant analysis technique is used to optimize differences in variability between experiments. This analysis reveals
that differences caused by changing Indian Ocean MLD were restricted mostly to local surface fluxes and could be ex-
plained by simple energy balance physics. Despite modeling adjustments intended to preserve the climate, the control slab
has a warmer climate than the fully coupled model. The resulting changes in the mean climate are consistent with changes
theoretically expected from global warming, particularly the “wet-gets-wetter”mechanism.

SIGNIFICANCE STATEMENT: The Madden–Julian oscillation (MJO) is a tropical eastward-moving pulse of con-
vection that can influence a wide variety of global phenomena. Currently, models do not capture many key aspects of
the MJO such as speed and spatial structure. The uppermost ocean layer that communicates with the atmosphere is
widely believed to play a large role in the evolution of theMJO. To test the importance of ocean dynamics on simulated
MJO, a slab-model configuration is used to allow the atmosphere and ocean to communicate through surface fluxes of
heat and moisture while suppressing interactive ocean currents. Changes to the upper ocean did not impact the MJO in
our model setup.
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1. Introduction

While analyzing surface pressure and zonal wind data from
Canton Island, Roland Madden and Paul Julian stumbled upon
a mode of tropical variation in the form of a large zonal circula-
tion cell (Madden and Julian 1971). Madden and Julian later ex-
tended their research by adding other stations across the
tropics. They found a clear eastward-moving signal that started
in the Indian Ocean and moved into the Pacific (Madden and
Julian 1972). This component of variability is now called the
Madden–Julian oscillation (MJO) and is the dominant mode of
tropical intraseasonal variability on 30–60-day time scales. Since
its discovery in 1971, the MJO has been found to have signifi-
cant global impacts (Zhang 2013; Lau and Waliser 2012). The
MJO sits in the gap between weather and climate and affects
several phenomena across both temporal scales from hurricanes
in the Gulf of Mexico to the monsoons in India (Klotzbach
2010; Taraphdar et al. 2018; Goswami et al. 2003). The MJO
has direct and indirect impacts on the world’s most populous
countries, making understanding, modeling, and predicting the
MJO of high socioeconomic importance (Wang 2006).

Models often fail to simulate basic features of the MJO, in-
cluding the eastward propagation speed, spatial structure, and
variance (e.g., Kim et al. 2009; Hung et al. 2013; Jiang et al. 2015;
Ahn et al. 2017; Lin et al. 2006). Jiang et al. (2015) found that
out of twenty-seven 20-yr climate simulation models from differ-
ent institutions, only 25% were able to simulate a realistic east-
ward propagation. Hung et al. (2013) found that only 1 out of 20
CMIP5 models is able to do so. CMIP6 models show an im-
provement to simulated MJO propagation (Ahn et al. 2020).
However, even when a model is able to produce a realistic east-
ward propagation, the speed is often too fast (Kim et al. 2009;
Ahn et al. 2017) or the variance is not strong enough (Lin et al.
2006). Even if a model produces a better representation of an
MJO event, the fundamental physics behind the improved simu-
lation is not well understood (Jiang et al. 2020).

Numerous studies suggest that the inability of climate models
to simulate a realistic MJO may in part be due to deficiencies in
modeling the dynamics of oceanic mixed layer (e.g., DeMott et al.
2015; Ling et al. 2017; Anber et al. 2017; Maloney and Sobel
2004). In particular, climate models have difficulty in simulating a
realistic mixed layer depth (MLD). Overly deep mixed layers are
a common bias in most climate models (e.g., de Boyer Montégut
et al. 2004; Huang et al. 2014). Further, tropical precipitation am-
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temperatures (SSTs) on intraseasonal time scales are strongly af-
fected by the structure of the upper ocean.

To take a specific example, we show in Figs. 1a and 1b the
average MLD for observations and CCSM4 forecasts [the
CCSM4 forecasts are from the North American Multimodel
Experiment, as discussed in Kirtman et al. (2014)]. As can be
seen in the Fig. 1, the modeled layer depth is nearly twice as
deep as corresponding observations, with the biggest frac-
tional error occurring in the Indian Ocean. These differences
are shown in Fig. 1c. Notably, the greatest discrepancy appear
to be associated with the Seychelles–Chagos Thermocline
Ridge (SCTR), an open ocean upwelling zone in southern
Indian Ocean that can limit the depth of the mixed layer to
less than 10 m (Trenary and Han 2012; Hermes and Reason
2008; McCreary et al. 1993; Woodberry et al. 1989; Vialard
et al. 2009). The shallowness of the mixed layer in the SCTR
region has been shown to significantly impact surface fluxes of
heat and moisture (Duvel et al. 2004; Ling et al. 2017). Moist
processes have been shown to have a large impact on MJO
structure and development (e.g., Jiang et al. 2018; DeMott
et al. 2019; Flatau et al. 1997), and are at the center of most
MJO dynamics theories (Jiang et al. 2020). Likewise, thermo-
dynamic ocean processes interacting with the atmosphere
have been shown to produce key MJO characteristics, such as
propagation speed and periodicity (e.g., Wang and Xie 1998).
Satellite data and reanalysis confirm a coherent relationship
between precipitation, SST, and surface fluxes during an MJO
event (Woolnough et al. 2000). Namely, the MJO drives oceanic

changes through heat fluxes (shortwave and longwave radia-
tion, sensible and latent heat fluxes), precipitation, and surface
wind stress (Woolnough et al. 2000). Preceding MJO convec-
tion there is an increase in incoming shortwave radiation pro-
ducing warm SST anomalies, a decrease in latent heat flux,
and a decrease in surface winds. During convection there is a
reduction in shortwave radiation due to cloud cover, and SST
cooling due to increased evaporation from westerly wind
bursts. The ocean responds with MJO induced SSTs anomalies
and upper-ocean changes that can modulate or directly induce
atmosphere–ocean heat exchange (e.g., Drushka et al. 2012;
Shinoda et al. 2017; Masumoto and Meyers 1998; Xie et al.
2002; Hermes and Reason 2009; DeMott et al. 2015) that have
been shown to produce MJO events (e.g., Bulusu 2016; DeMott
et al. 2015).

Further, it is believed that the strong air–sea coupling in the
SCTR may impact the development and evolution of the
MJO (Vialard et al. 2009, 2008). While there has been consid-
erable focus on the effects of atmosphere–ocean dynamics on
the MJO within the SCTR, there remains relatively little
known about the role of atmosphere–ocean dynamics across
the tropical Indian Ocean in determining MJO characteristics,
such as convective strength, eastward propagation, predict-
ability, and variability (Wang et al. 2012; Ray and Zhang 2010;
DeMott et al. 2015; Shoup et al. 2020; Phillips et al. 2021; Hagos
et al. 2020). Thus, this paper explores the sensitivity of tropical
variability to MLD changes over the Indian Ocean (258N–208S
and 408–1008E).

Using historical data from a single CESM large-ensemble
simulation and CESM version 1.2.1, we perform a series of ex-
periments designed to clarify the dependence between oceanic
MLD and MJO and more broadly the tropical circulation, in-
cluding its mean structure and intraseasonal variability. Specifi-
cally, we start with CESM’s in its fully coupled configuration
and replace CESMs dynamical ocean model with a motionless
slab. From there, we adjust the MLD in the slab in various
ways, particularly over the Indian Ocean. We then study the re-
sulting changes in the tropical circulation to gain insight into the
role of the MLD in tropical circulation.

2. Data

a. Climate model

CESM1.2.1 uses Community Atmosphere Model version 5
(CAM5), Parallel Ocean Program (POP) version 2 from Los
Alamos National Laboratory (LANL), and the Community Land
Model version 4 (CLM4) with Carbon Nitrogen (CN) (Hurrell
et al. 2013). We use the default physics package for CAM5 with a
finite volume dynamical core on 1.98 3 2.508 latitude3 longitude
grid with thirty vertical levels.

CAM5 parameterizes deep convection using the Zhang and
McFarlane (1995) convective scheme. This convective param-
eterization scheme has three core components (trigger func-
tion, closure assumption, and bulk cloud model) with a
convective available potential energy (CAPE)-based closure.
The trigger function determines the occurrence of convection
and “triggers” the convective scheme when the CAPE is

FIG. 1. Mixed layer depth (MLD; m) in (top) the fully coupled
CCSM4 model, (middle) the observational GODAS, and (bottom)
the difference (CCSM4 2 GODAS) divided by GODAS MLD 3

10. All values averaged over the years 1982–2000.
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greater than 70 J kg21. The closure assumption determines
the convective intensity (includes effects from large-scale forc-
ing) and assumes that the convection acts to consume the
CAPE. Finally, the bulk cloud model determines convective
transport and the vertical distribution of convective heating and
drying (Song and Zhang 2018; Conley 2012). Specifically, the
moist turbulence scheme from Bretherton et al. (2004), is re-
sponsible for the vertical transport of heat and communicates
with the surface heat flux scheme (functions of SST) (Conley
2012). CAM obeys the fundamental balances of energy, mo-
mentum, and moisture.

It is important to note that climatologies (mean states) within
the model are vital to MJO simulations (e.g., Inness and Slingo
2003). The model needs to be able to reproduce basic features
such as intertropical convergence zone location, westerly lower
tropospheric winds, and mean SST distribution. The climatolo-
gies will be discussed in detail in section 3a, but both the fully
coupled and slab control run are able to produce the basic fea-
tures vital to the MJO simulations. However, CAM5 alone
struggles to capture key features of an MJO event including
spatiotemporal variability (e.g., Lan et al. 2022; Jiang et al.
2015; Boyle et al. 2015). One hypothesis for the poor MJO sim-
ulation is that the coupled model has an excessively deep ML in
the Indian Ocean, which affects the air–sea interaction. To ex-
plore this hypothesis, we conduct sensitivity experiments to see
if removing this bias changes (and hopefully improves) the
MJO simulations.

b. Coupled and control model runs

In this study, all data are interpolated to a 1.98 3 2.508 grid,
with a daily coupling rate between atmosphere and ocean mod-
els. To focus our efforts on the tropics, we restrict our analysis
of tropical variability to 308S–308N. Our first dataset is a fully
coupled run which uses the CESM large-ensemble simulation
with 1850–2000 transient forcing (output data made using
CCSM4). More information on the CESM large-ensemble pro-
ject can be found in Kay et al. (2015). The fully coupled run is
evaluated over the years 1850–70. Bui and Maloney (2019)
found barely detectable MJO changes even after 100 years of
forcing, therefore we conclude that there are no differences in
MJO from the CESM transient forcing and preindustrial con-
trol simulations. This was further confirmed by comparing auto-
and cross correlations between the fully coupled model from
1850 to 1870 and from 1980 to 2005, where we found no statisti-
cal difference between the two time periods.

Note here that the fully coupled model data differ from what
was presented in Fig. 1. Both are from CCSM4, but Fig. 1 MLD
spans the years 1982–2000, while the fully coupled simulation
spans 1850–70. Figure 1 was chosen to match observational
data, and the fully coupled data were chosen to match our
experiments.

For our control run, we replace the dynamical ocean model
with a motionless slab, or slab ocean model (SOM). The
SOM represents a well-mixed ocean mixed layer with no hori-
zontal communication between ocean columns, while allow-
ing for interaction with the overlying atmosphere through

heat and moisture fluxes. Thus, a SOM removes interactive
ocean dynamics but keeps thermodynamic coupling.

The SOM equation is derived from the heat content of an
ocean layer (Qh) defined as

Qh 5 rcpTh, (1)

where r and cp are the density and specific heat of seawater,
respectively; T is ocean temperature; and h is the mixed layer
depth. Conservation of energy leads to the standard SOM
equation,

rcph
dT
dt

5 qo 2 Qdp, (2)

where qo is the net surface energy flux (net shortwave radia-
tion minus the sum of surface longwave radiation, and latent/
sensible heat fluxes) and dt is 2 months. The “q flux” term (i.e.,
ocean heat flux convergence Qdp) accounts for entrainment/
detrainment at the bottom boundary and for horizontal heat
transport not included in a SOM. The Qdp is computed as a re-
sidual from Eq. (2) where SSTs, MLD (h), and qo are annual
averages from the fully coupled run [see Bitz et al. (2012) for
more information].

The Qdp is derived to maintain the SSTs found in the fully
coupled run, alleviating concern that the SOM will produce a
climate that differs from the fully coupled simulation. The
prognostic variable of mixed layer temperature (T) is calcu-
lated by integrating Eq. (2) over time. Using Eq. (2) allows
for the fully interactive treatment of thermodynamic ex-
change of energy between the atmosphere and ocean surface.

c. Mixed layer depth experiment model runs

Due to model biases, the MLD in the coupled model (and
therefore the SOM control run) is generally deeper than in
observations, particularly over the thermocline ridge in the
Indian Ocean (SCTR). Therefore, we want to run a set of ex-
periments where we shoal the MLD over the Indian Ocean.
These experiments are similar to those used in previous stud-
ies (e.g., Maloney and Sobel 2004; Maloney and Kiehl 2002;
Marshall et al. 2008). In one experiment we fix the MLD in
the Indian Ocean (258N–208S and 408–1008E) to 2 m without
changing Qdp (function of surface temperature and MLD).
We call this run, “2mIO.” In another experiment, we fix the
MLD in the Indian Ocean to 2 m and adjust Qdp to maintain
the climatology of the fully coupled model. We call this run
“2mIOqadj.” This unadjusted run allows the climatology to
drift, but this may be easier to interpret because only one
change was made to the model. Additionally, we ran five
other runs similar to 2mIO accept the MLD was set to 10, 20,
30, 40, and 50 m to test MLD sensitivity over more realistic
values. Each experiment is run over a period of 20 years, initi-
ated in 1850. All experiments are listed in Table 1. Note that
for the sensitivity experiments, changes are only made to the
Indian Ocean. MLD and Qdp values outside of the Indian
Ocean are always set to spatially varying annually averaged
fully coupled values (i.e., control run values, see Fig. A1 in
the appendix).
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d. Observational data

For comparison with observations, we use the National Oce-
anic and Atmospheric Administration (NOAA) interpolated
outgoing longwave radiation (olr) (Liebmann and Smith 1996)
and the National Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP–NCAR) Reanalysis
1 for the zonal winds (Kalnay et al. 1996; NCEP et al. 1994).
All observational data are interpolated to a 1.98 latitude 3 2.508
longitude grid and evaluated over the years 1979–2016.

3. Changes in the mean and in the MJO

a. Diagnosing changes in mean state climatology

Despite including Qdp to preserve the climate, the SOM
control run has a warmer climate than the fully coupled run
(see Fig. 2). This is because the derivation of Qdp effectively
assumes that the surface fluxes in the two models are the same
on average, which is not the case because coupled atmosphere
ocean interactions differ between the SOM and dynamical
ocean configurations. Because the control run ends up being
somewhat warmer than the fully coupled run, we expect
the corresponding changes in other climate variables to be
consistent with changes predicted under global warming, for
instance the “wet-gets-wetter” mechanism of Held and
Soden (2006).

To test this expectation, Fig. 3 shows a comparison of the cli-
matological precipitation in the fully coupled run, and the change
in precipitation between the fully coupled and SOM control run.
Much of the increase in the change in precipitation occurs over
the wettest regions, consistent with the wet-gets-wetter mecha-
nism, but the patterns are not exact, particularly over the coasts.
Other changes in the mean can be predicted based on known re-
lations with precipitation. For instance, increasing precipitation
in the control run corresponds to increased convection, de-
creased net surface shortwave radiation, increased net surface
longwave radiation, and decreased outgoing longwave radiation
(not shown). Note that the double ITCZ, or the addition of ex-
cessive precipitation in the Southern Hemisphere, is a common
model problem (Hwang and Frierson 2013). In the present study,
this model error is not critical because our goal is to understand
the impact of changes in ocean model within a physically consis-
tent dynamical system.

b. Quantifying the MJO

To evaluate differences in the MJO between the model
runs and observations, we use the revised real-time multivari-
ate MJO (RMMr) index (see Wheeler and Hendon 2004; Liu
et al. 2016). The propagation, predictability, and variability of
the MJO can be assessed from the RMM1 and RMM2 indices
making it widely used in MJO studies (Dasgupta et al. 2020).
For example, predictability is measured from the decay of the
autocorrelation function time of RMM1 and RMM2, variabil-
ity is measured by variance, and propagation is measured by
cross correlations. Our daily data are projected onto the em-
pirical orthogonal function (EOF) patterns of Wheeler and
Hendon (2004) (i.e., observations). We examined composites
between MJO and other variables in the model, but it is diffi-
cult to know if the differences are significant just by eye. A
more rigorous statistical approach is to compare auto- and
cross correlations between the RMMr1 and RMMr2 time se-
ries. Autocorrelations can be used to characterize memory/
persistence and cross correlations can be used to characterize

TABLE 1. Experiment list.

Experiment name
Indian Ocean MLD

value (m)
Indian Ocean Qdp

value
Average MLD change from control

run value (m)

Fully Coupled Interactive N/A uses POP }

Control Spatially varying Spatially varying }

2mIO 2 Spatially varying 30 decrease
2mIOqadj 2 Function of MLD

[see Eq. (2)]
30 decrease

10mIO 10 Spatially varying 22 decrease
20mIO 20 Spatially varying 12 decrease
30mIO 30 Spatially varying 2 decrease
40mIO 40 Spatially varying 7 increase
50mIO 50 Spatially varying 17 increase

FIG. 2. (top) The mean surface temperature (8C) in the fully cou-
pled run and (bottom) the difference in mean surface temperature
(8C) for the control slab minus fully coupled runs.
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propagation. We also examined other MJO metrics including
Hovmöller plots, wavenumber–frequency spectra, and regres-
sion patterns (e.g., Waliser et al. 2009; Wang et al. 2015).
These alternative metrics consistently indicated that the MJO
did not change significantly, which is not surprising since each
of these metrics are derived from the RMM1 and RMM2 indi-
ces, which themselves show few differences. However, a rigor-
ous significance test for differences in these alternative metrics
is lacking, therefore results from these metrics will not be dis-
cussed further.

However, it was hard to make a definitive decision if the
MJO changed significantly since these figures were evaluated
by eye. Once we discovered that active ocean dynamics did
not improve the models’ simulation of the MJO from the
auto-/cross correlations, we decided not to delve into pro-
cesses and excluded other MJO diagnostics.

To account for serial correlation, the RMMr 20-yr time
series are split into two 10-yr periods and the correlations
are computed separately for each 10-yr period. When the
difference within the same experiment is comparable to the

FIG. 3. Mean precipitation (mm day21) for the fully coupled run (shading) and the difference be-
tween the control slab and fully coupled runs (contouring).

FIG. 4. Autocorrelation as a function of lag (in days) for all Indian Ocean MLD values in
SOM experiments (see Table 1). (a) Autocorrelations for RMMr1, (b) autocorrelations for
RMMr2, and (c) cross correlations between RMMr1 and RMMr2. Solid and dashed lines of the
same color denote the first and second half of the same time series.
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difference between experiments, we can conclude that there is
no significant change in variability between experiments. Prelimi-
nary analysis of auto- and cross correlations in our experiments
showed no difference between seasons (i.e., boreal winter versus
summer), so we reported the full time series in our analysis.

The autocorrelation function for RMMr1 and RMMr2 and
the cross-correlation function between RMMr1 and RMMr2
are shown in Fig. 4 for all Indian Ocean MLD change experi-
ments listed in Table 1. Results from different model experi-
ments are shown in different colors and the corresponding
dashed and the solid curves show the estimates from two 10-yr
periods between the same experiment. Comparing the auto- and
cross correlations across model experiments, we see that at lags
less than 10 days there is little difference in autocorrelations be-
tween experiments. At longer lag times, the two estimates from
the same experiment diverge, illustrating an increase in sampling
error. As a result, we conclude there is not a significant MJO dif-
ference between subdivided 10-yr data segments. Due to this
finding of no MJO sensitivity among MLD values, including at
more realistic values between 15 and 30 m (e.g., Maloney and
Sobel 2004), we will now only report the extreme case of an
MLD shoaled to 2 m.

Similar to Fig. 4, Fig. 5 shows the autocorrelation function
for RMMr1 and RMMr2 and the cross-correlation function
between RMMr1 and RMMr2 but now comparing the 2 m
SOM cases (2mIO and 2mIOqadj) with the SOM control,
fully coupled run, and observations. Again, we see there is lit-
tle difference in autocorrelations between experiments at lags
less than 10 days, implying that changing the MLD, in this
case reducing the SOM thickness to 2 m (over the Indian
Ocean), and ocean model (e.g., fully coupled to SOM) have

little impact on MJO variability. We also see that the ob-
served RMMr index shows stronger oscillations compared to
the model RMMr, which tend to decay to zero with little oscil-
latory behaviors further indicating the model does not pro-
duce a realistic MJO.

c. Isolating impacts on climate variability

We now want to consider changes in intraseasonal variability.
To do this, we remove the 120-day running mean from the data,
following the methodology used in RMM index calculations
(e.g., Wheeler and Hendon 2004; Liu et al. 2016; Gottschalck
et al. 2010; Martin et al. 2020) to isolate intraseasonal variability
and remove interannual variability, decadal variability, and
trends. Further, averaging over 158S and 158N smooths out the
majority of tropical synoptic scale waves (Wheeler and Hendon
2004; Liu et al. 2016). We then assume that the mean (m) and
variance (s2) of precipitation follow the power law:

s2 5 kma, (3)

where a is the power-law exponent and k is a constant. We
make this assumption because power laws describe phenom-
ena that “cluster” at one end of a distribution (e.g., precipita-
tion, where extreme events are infrequent) (Olsson and
Burlando 2002; Cavanaugh et al. 2015). This is similar to the
work done by Shin et al. (2016), who use the power law to re-
late rainfall kinetic energy to rainfall intensity. Small changes
in (3) are governed by the differential,

dlogs2 5 adlogm: (4)

FIG. 5. As in Fig. 4, but adding the auto- and cross correlations for the 2-mMLD sensitivity
experiments.

J OURNAL OF CL IMATE VOLUME 364076

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:04 PM UTC



Figure 6 shows a scatter diagram of dlogs2 versus dlogm. The
line fit to these data gives an estimate of a as 1.7 with the in-
tercept fixed to 0. Integrating the differential in Eq. (4) gives

s2
control

s2
fullycoupled

5
mcontrol

mfullycoupled

( )a
: (5)

The predicted change in the ratio of variance for precipitation
estimated from Eq. (5) is shown in Fig. 7. Comparing to the
corresponding actual (i.e., point-by-point or local) variance
ratio shows that, while there are some differences, the above
model is able to produce the gross structure and amplitude of
the mean precipitation ratio. Up to this point, our analysis in-
dicates that intraseasonal variability of precipitation differs
between model experiments. However, for this analysis to be
meaningful, we must determine if the changes in variability of
the individual climate variables are statistically significant.

4. Did the variability change outside of the MJO?

In this section, we discuss a statistical optimization proce-
dure called covariant discriminant analysis (CDA), which will
be used to establish the field significance of changes in vari-
ance. Note that while simpler significance test methods exist
(e.g., F test and variance differences), those methods are only
local and do not rule out changes in modes of variability. In
contrast, CDA is able to identify changes in modes of
variability.

a. Covariant discriminant analysis

To test the significance of changes in variability, we want to
compare variability between our experiments. EOFs are a
standard way of characterizing variability, but EOFs are not
the best way to compare variability. For instance, the biggest

FIG. 6. Scatterplot of dlogs2 vs dlogm for precipitation (mm day21) where s2 and m refer to the
variance and mean, respectively. The corresponding power law fit is shown in red.

FIG. 7. (top) Predicted precipitation variance ratio based on
changes in mean precipitation [see Eq. (5)] and (bottom) the actual
variance ratio.
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changes in variability might not occur in the first EOF. More-
over, EOFs depend on the sample, so differences in EOFs
can occur simply because of sampling variability. Since we are
interested in comparing variability between a set experiments
(X and Y), we want to characterize differences in variability.
Therefore, we want to test the null hypothesis (H0),

H0 : SX 5 SY , (6)

which is tantamount to the hypothesis that the EOFs and the
explained variances are the same for X and Y. Here, SX is the
covariance matrix of X, and SY is the covariance matrix of Y.

To quantify the differences between two covariance matri-
ces, we find a linear combination of variables to maximize or
minimize the ratio of variances. This technique is called CDA
(DelSole and Tippett 2022).

Let x and y denote the variables under investigation in two
experiments. At any given time, these vectors contain the val-
ues at S spatial grid points. These S values are denoted x1, … ,
xS and y1, … , yS and are the elements of x and y, therefore,

x 5

x1

..

.

xS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and y 5

y1

..

.

yS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: (7)

A linear combination of the S spatial grid points for x is
denoted,

rx 5 q1x1 1 q2x2 1 · · · 1 qsxs, (8)

where q1, … , qS are projection coefficients. Similarly, a linear
combination of the Y variables is

ry 5 q1y1 1 q2y2 1 · · · 1 qsys: (9)

These linear combinations can be expressed more concisely as

rx 5 qTx and ry 5 qTy, (10)

where superscript T denotes the transpose operation. To mea-
sure differences in variability, we use the ratio of variances l,
defined as

l 5
var[rx]
var[ry]

5
qTSxq

qTSyq
: (11)

If there is no difference in covariance matrices, then l will
equal one for all choices of q. Thus, we test whether l 5 1
for all choices of q. We do this by finding the projection co-
efficients q that maximize or minimize l. By maximizing or
minimizing l, we explore differences in variability (or
more precisely, differences in covariance matrices) be-
tween x and y.

CDA seeks to find the projection vectors that optimize l. It
is a standard result in linear algebra that the solution is

FIG. 8. Flowchart showing how CDAmaximizes and minimizes the variation ratio by optimizing eigenvalues (l) found by solving the gen-
eralized eigenvalue problem in purple.
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obtained by solving the generalized eigenvalue problem
(Serber 2008, result 6.59),

Sxq 5 lSyq: (12)

The eigenvalues l are called discriminant ratios and are or-
dered from largest to smallest. The second eigenvalue is the
largest variance ratio among components that are uncorre-
lated with the first and so on.

Figure 8 shows a flowchart of the CDA procedure. We use
the convention that Y is the reference run and X is the run
that is spun off from the reference. Thus, when comparing the
fully coupled and control run, Y is the fully coupled run, and
X is the control run based off of the fully coupled run. X and
Y are then projected onto precomputed EOF patterns from
an independent run (second ensemble member of the fully

coupled run) to translate the data into principal components
(PCs). Deriving EOFs from an independent run avoids over-
fitting the variance. We choose 50 EOFs (i.e., 50 discriminant
components) based on the percent of variance explained: for
all variables, the 50th EOF explains no more than 0.5% of the
variance. Since a component that explains less than 0.5% of the
total variance is probably not important, an analysis based on
50 EOFs is adequate. Note that using too few EOFs may fail to
detect differences simply because the resulting low-dimensional
space is too restrictive to capture the differences. We performed
our CDA for 25, 50, and 75 EOFs, finding similar outcomes be-
tween them. Therefore, we decided to present the results for a
relatively large truncation (50 EOFs) to eliminate concerns
from using too few EOFs.

Our data are serially correlated, and testing significance
with serially correlated data is very challenging. In this work,

FIG. 9. Discriminant ratios for comparing precipitation, surface zonal wind, 850-hPa zonal wind, outgoing longwave radiation (olr), sen-
sible heat flux, and net surface heat flux between the control and fully coupled runs. Red dots show the discriminant ratios, blue and brown
curves show the 95% confidence interval under the null hypothesis of equal covariance matrices. The discriminant ratios were computed
using 50 EOFs derived from an independent realization.
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we have chosen a simple approach that exploits the long
length of the simulations. Specifically, the data are split into
two halves, and then X and Y are taken from the first and sec-
ond half of the same simulation. This provides a sample from
the null hypothesis of no change in stochastic processes, be-
cause the time series are drawn from the same model. An ad-
vantage of this approach is that it makes no assumptions
about the serial correlation of tropical variability. This proce-
dure yields two sets of l values, because the ratio can be
formed in two ways: first over second half, or second over first
half. Moreover, we applied this procedure to six other slab
ocean model experiments, yielding 12 realizations of l values.
We then use the mean plus/minus two standard deviations to

estimate the 95% confidence interval of l values when the
null hypothesis is true.

b. CDA results

Comparing the slab and fully coupled runs, CDA revealed
that significant variance differences occurred in the precipita-
tion, surface zonal wind, 850-hPa zonal wind, olr, sensible
heat flux, and net surface heat flux (see Fig. 9).

All of the variables in Fig. 9 show more than half of their
discriminant components lying outside of the confidence in-
tervals. From this, we conclude that differences in variability
cannot be expressed in a few patterns. Therefore, it is sensible

FIG. 10. Local variance ratios for precipitation (precip), surface zonal wind (usfc), 850-hPa
zonal wind (u850), outgoing longwave radiation (olr), sensible heat flux (shf), and net surface
heat flux (qo) between the control and fully coupled runs.
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to draw conclusions based off local changes in variance which
are shown in Fig. 10. In Fig. 10 we see that the slab run has de-
creased variability in the precipitation, lower level zonal
winds, and qo, and increased variability in olr compared to the
fully coupled run. These variance changes are a consequence
of the warming pattern present in the slab run. It is important
to note here that olr is an outlier for two reasons. The first is
that it has no discriminate components lying inside the confi-
dence intervals, in fact they lie distinctively higher than the
other variables. This is perplexing to us, and while olr is con-
sistent with the precipitation scaling argument discussed in
section 3c, we do not have a good explanation as to why olr
differs in this way. The second reason is that while the olr and
precipitation variance patterns have similarities, there are still
differences. This is contrary to common assumption, as olr is
often a proxy for precipitation. However, olr is not precipita-
tion, and our results suggest that olr variance is not a good
proxy of precipitation variance.

We can use the results from CDA to determine if the thin-
ning of MLD to 2 m impacts the large-scale climate on intra-
seasonal time scales. CDA analysis indicated that in both the
2mIOqadj and 2mIO cases, only the net surface heat flux (qo)
and latent heat flux (lhf) show a significant change in variabil-
ity compared to the control run (see Fig. A2). Since the same
results were obtained for 2mIO and 2mIOadj, the reduction
in variance is insensitive toQdp.

Figure 11 shows the local variances of qo for the 2mIO run.
The qo and lhf pattern from the 2mIOqadj are not shown be-
cause they have a similar pattern. The large variance decrease in
qo (and lhf) is seen just over the Indian Ocean. This is because a
reduced MLD results in less thermal inertia, allowing the ocean
slab to adjust quickly to atmospheric temperature changes,
thereby reducing temperature differences between atmosphere
and ocean, which in turn constrains the amplitude of the sur-
face fluxes (Keerthi et al. 2016). In other words, for a given
surface lhf, a thin ocean slab will change its temperature faster
than a thicker slab. Since lhf acts to remove the atmosphere–
ocean temperature differences, the atmosphere–ocean tem-
perature difference is driven toward 0 more strongly in a thin-
ner mixed layer. Therefore, since the temperature differences
are smaller in the 2-m MLD cases, the variability in latent heat
flux is also smaller.

5. Summary and conclusions

The goal of this paper was to gain insight into the
ocean’s role in tropical intraseasonal variability, particu-
larly the initiation and maintenance of the Madden–Julian
oscillation. This was done by analyzing and performing a
suite of sensitivity experiments with a coupled atmosphere–
ocean model in which the ocean component was modified in
various ways. First, the ocean was replaced by a motionless
zero-dimensional slab whose heat capacity varied with longi-
tude and latitude according to the spatially varying annually
averaged mixed layer depth from the fully coupled model. To
preserve the climatological surface temperature, a periodic
function of time was added to the thermodynamic equation to
parameterize the effect of the climatological ocean currents

(known as a q-flux term). By comparing the fully coupled
model with the slab model we can isolate the role of interac-
tive ocean dynamics (e.g., ocean currents, entrainment, etc.)
in atmospheric variability.

Despite precautions taken to preserve the climatology by
specifying the q-flux term, the slab model has a warmer cli-
mate compared to the fully coupled model. We are able to
demonstrate that this warming leads to changes in climate
variability. In particular, we show that changes in precipita-
tion that result from a warmer climate can be predicted using
a scaling argument.

No significant difference in the MJO could be detected
between the fully coupled and the slab version of the mod-
els. However, our modeled MJO was less persistent than the
observed MJO. One major shortcoming of the models was
that the mixed layer is much deeper in the Indian Ocean
than in observations, particularly over the SCTR. This moti-
vated us to investigate the impact of changing the mixed
layer depth over the Indian ocean. Surprisingly, imposing
varying MLDs (2, 10, 20, 30, 40, 50 m) over the Indian
Ocean led to no significant change in MJO variability or
persistence.

Through a statistical optimization procedure called covari-
ance discriminant analysis, we were able to explore changes in
variability on intraseasonal time scales between our model ex-
periments in a more comprehensive fashion. Reducing the
depth of the mixed layer over the Indian ocean led to a signifi-
cant decrease in variability of the latent heat flux in that re-
gion, presumably because the thinner slab has a smaller heat
capacity and adjusts to the atmospheric temperature more
rapidly, thereby reducing the vertical temperature differences
that drive the latent heat fluxes. Other than these changes,
which could be explained by simple thermodynamics, no
other significant changes in variability were detected in

FIG. 11. (top) Local standard deviation of net surface heat flux in
the control and (bottom) the variance ratio for 2mIO/control.
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response to reducing the depth of the mixed layer over the
Indian ocean.

A plausible explanation for our results is that, in our partic-
ular model, the feedback between the ocean and MJO
variability is weaker than in observations. Specifically, this
hypothesis would explain the lack of sensitivity of MJO vari-
ability to ocean mixed layer depth, and explain the weaker
persistence of MJO variability in the model than in observa-
tions. We note that previous SOM studies of this feedback are
not always consistent, as some studies find a strong feedback
(Maloney and Sobel 2004; Maloney and Kiehl 2002; Marshall
and Plumb 2008) while others do not (e.g., Grabowski 2006)
This hypothesis leads us to suggest that efforts to improve

MJO variability in this model should focus on improving the
feedback coupling between the MJO and the underlying
ocean.
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FIG. A1. Distribution of MLD andQdp for (top) control SOM run, (middle) 2mIOqadj, and (bottom) 2mIO.
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2mIO, 2mIOqadj, and control run data are available at ftp://
cola.gmu.edu/pub/tciceron/.

APPENDIX

Additional Model Configuration Information and Results

This appendix contains two figures to further the reader's
understanding of the model configuration and CDA results.
Figure A1 shows the MLD and qflux spatial distribution
between the control, 2mIOqadj, and 2mIO to see how these
fields change under different model constraints. Figure A2
shows the corresponding discriminate ratios that are discussed
but not shown in the main text.
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